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Abstract. We present BinCAT, a new open-source static analyzer of
binary code. Using abstract interpretation as its core, it currently im-
plements control flow graph reconstruction, value analysis, taint analysis
at the bit level and type reconstruction. Analyses can be led either in
forward or backward mode. We expect this tool to be more useful than
existing ones as it is (i) extensible in terms of analysis capabilities and
supported architectures; (ii) scriptable and (iii) fully integrated into IDA.
BinCAT is available as free software: https://github.com/airbus-
seclab/bincat/.

1 Introduction

Motivation We think that most practical reverse engineering tools lack
advanced analytics features. In particular:

– reliable static data tainting, which can be used to gain quick insight of
interesting code paths in a complex function or code base. By tainting
data of interest, relevant paths quickly stand out. Backward analysis
can also be used to find where interesting data comes from;

– static value analysis, which is very helpful when code cannot be run
dynamically for instance because of architecture constraints, needed
privileges, secure boot, etc.;

– type reconstruction and propagation: reconstructing high level types
(structures and pointers to structures) and assigning them to variables
speeds up the understanding of code.
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Nevertheless, a tool offering some of those features but being cumber-
some to setup or difficult to integrate in the analyst’s workflow would not
help. Hence the tool should be able to:

– interact easily with the analysts to allow them to inject their security
knowledge and hence increase the analysis capabilities of the tool.
Interactions could also be used to guide the tool when it gets too
imprecise or for very tricky parts in the program;

– be accessible: computed properties and user assertions have to be
expressed in the semantics of the program to be analyzed (i.e. assembly)
rather than in the underlying theory of the tool which the analyst may
not be familiar with;

– report information at different levels: light weight for quick human
processing and more complete, but scriptable, for more advanced
research.

Design principles Based on the considerations above we have decided
to build BinCAT – which stands for Binary Code Analysis Toolkit – a
new tool for the static analysis of binary code with the following design
principles:

– usable in a standard reverse engineering workflow: we have chosen to
be fully integrated in IDA1;

– guided by real case studies;
– good at tasks where the analyst has no added value;
– emphasizing trust on the analyst, acknowledging that fully automated

analysis does not work in practice;
– reporting information at the semantics level of the executable and not

in the underlying theory of BinCAT;
– processing the analysis in a theoretical framework, namely abstract

interpretation [7], that guarantees the absence of false negatives except
those explicitly made by the analyst. This property enables to know
which hypotheses have been applied so that the analysts can change
their mind and automatically revert (part of) them;

– easily extensible: the mathematical framework of the tool is able to
combine as many kinds of analyses as needed with only one code
exploration engine. All analyses are led in parallel and there is a
mechanism that makes different analyses communicate results to each
other;

1 No, radare is not even close to replacing IDA.
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– dealing with loop approximation without having to fully unroll them;
– providing only benefits to the user: if BinCAT fails to produce useful

results, then the reverser is not blocked and can continue reversing as
usual;

– coming with a scriptable API to allow advanced users to run the tool
in ways that are not reachable from the GUI.

Current features Obviously, those interfaces are only useful if the
analysis engine itself provides features that will help the reverser, such as:
– implementation of the semantics of most of the general purpose in-

structions of the x86_32 instruction set, including segmentation;
– value analysis, both forward and backward;
– data tainting at the bit level, forward and backward;
– type reconstruction and type propagation, forward and backward;
– detection of call stack tampering;
– smart control flow graph reconstruction: BinCAT is able to combine

value analysis with the call graph reconstruction, enabling indirect
jump resolution and hence going further in code analysis.

Use cases Typical use cases of BinCAT are:
– static debugging: the reverser can start the analysis from a concrete

state and see what happens as if in a debugger;
– tainting a register and/or memory to analyze:

• where the data is used,
• where the data comes from;

– using type information provided by the analyst or IDA, combined with
value analysis to:

• recover potential high-level types for data (stack, globals, registers),
• propagate complex types, for examples from API calls, deep into

the code.

Outline The rest of the paper is organized as follows: section 2 illustrates
the use of BinCAT and its underlying concepts on several examples;
section 3 exposes the main characteristics of BinCAT; section 4 shows its
architecture; section 5 concludes this paper while presenting future work.

2 BinCAT in action

The purpose of this section is both to illustrate a typical use of BinCAT and
results we may expect on it (see section 2.1), and to explain its functional
principle on the analysis of two x86 instructions (see section 2.2).
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2.1 A complete example

A typical use of BinCAT is an impact analysis of the parameters of an
unknown hash function. For the sake of demonstration, the example is also
presented with its source code in Listing 1. This example while artificial
motivates the need of a taint analysis at bit-level.

1 # include <stdio .h>
2 # include <string .h>
3 # include <stdint .h>
4
5 uint8_t buffer [12] = {0};
6
7 int32_t __attribute__ (( noinline )) myhash ( uint8_t *data , int len)
8 {
9 uint32_t * data_32 = ( uint32_t *) data ;

10 return data_32 [0]^ data_32 [1]^ data_32 [2];
11 }
12
13 int main (int argc , char * argv [])
14 {
15 int32_t hash ;
16
17 if( argc < 2 || strlen ( argv [1]) < 12)
18 {
19 for(int i=0;i <12; i++)
20 buffer [i] = i;
21 memcpy (buffer , " 0123456789 ", 10);
22 } else {
23 memcpy (buffer , argv [1] , 12);
24 }
25 hash = myhash (buffer , 12);
26 printf ("%x\n", hash );
27 return 0;
28 }

Listing 1. Source code of the program to be analyzed

Basic analysis We are interested in the impact of the parameters of
the hash function myhash when it is called without argument on the
command line. That case corresponds to lines 19 to 21 where the buffer
to hash is initialized with an increasing counter and partially overwritten
by “0123456789”. Figure 1 shows the relevant code in IDA.

To statically determine what the code is doing, the analyst runs
BinCAT with the default configuration, starting at the initialization
instruction (top left mov eax,0). Figure 2 shows the resulting listing:
every line in gray has been analyzed.

Moreover, each intermediate result can be displayed like a static
debugger could do. For example, Figure 3 shows the computed values
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Fig. 1. Simple example disassembly

Fig. 2. Updated disassembly after BinCAT run with default configuration
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at the push eax instruction, right after the call to myhash (4th line of
the bottom basic block). Here, we can see the return value of myhash in
the eax register (0F0E3D3C). We can also see that ebp and ebx values are
unknown, as represented by the ? nibbles. As the default configuration
sets all registers to an unknown value, this means here that they have
never been assigned2. We can also see in the corresponding Hex view
(Figure 3 too) the computed values of the stack:

– the return address of the myhash call: 47 06 00 00
– the first argument (address of buffer): 20 20 00 00
– the size of the buffer: 0C 00 00 00

Both windows are synchronized and show the state for the currently
selected instruction in IDA (ScreenEA). When an address is analyzed
several times, in case of loops or multiple calls, analysts can select which
instance they want to display.

Tainting data In our example, to check the effects of eax on the com-
puted hash, we can taint it at the initialization: by right clicking on eax
in the disassembly mov eax, 0 and adding a taint override, as shown
on Figure 4. The keyword TAINT_ALL means that all bits of eax will be
tainted after the analysis of this instruction. Other values are TAINT_NONE
to untaint all bits and a mask to specify exactly which are tainted. For
instance, 0xFF000000 taints only the highest byte of eax. To taint the
bits 28 to 31 and to mark bits 24 to 27’s taint as unknown, one has to use
the mask 0xFF000000?0F000000.

The analysis is then re-run, giving the result shown in Figure 5, where
lines in green/light gray indicate that tainted data is manipulated.

Likewise, the registers and memory view use green to indicate tainted
nibbles (Figure 6).

As we can see, because we initially tainted the eax register, taint was
propagated to memory (in the buffer initialization, the 0A 0B part) and
finally back to a part of eax (0F 0E) through the myhash calculation.

Restricting analysis If the analyst only wants to study a part of the
code, or wants to exclude branches, BinCAT includes a cut mechanism,
which will stop further analysis from a given point, as shown on Figure 7
where we cut after the initialization loop.

2 For more complex analyses this could also mean that the analyzer fails to be enough
precise.
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Fig. 3. Computed values of registers and memory.

Fig. 4. Analyst-defined taint overrides in IDA

Fig. 5. Disassembly showing instructions processing tainted data
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Fig. 6. Registers and memory contents before and after tainting eax

Fig. 7. Analysis stopped after the initialization loop
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2.2 Focus on instruction analysis
This section demonstrates in detail the way BinCAT analyses two instruc-
tions.

push eax In this example, the push eax instruction is encountered in a
given program. The instruction is decoded into BinCAT’s intermediate
language:

esp <- (esp - 0x4);
(32)[esp] <- eax;

Listing 2. BinCAT intermediate language representation of push eax

The engine will then use the language to compute the side effects of
each instruction of the intermediate language. In this case:
1. subtract 4 to esp
2. transfer all data information from eax to the memory pointed by esp,

that is
– the content of eax as a 32 bit little endian word
– the type of eax
– the taint of eax

Note that a tainted pointer will taint read and written data when it is
dereferenced.

repe scasd In this example, the repe scasd instruction is encountered.
Register eax is set to 0 prior to repe scasd so repe scasd will scan the
memory pointed by edi, 4 bytes by 4 bytes, until it reaches a 32 bit word
different from 0.

The BinCAT analyzer represents this instruction using one state for
each repetition of scasd, up to the value specified by the user-supplied
unroll parameter. Once this value is reached, it applies the widening
operator to overapproximate the remaining iterations of the loop (see
section 3).

Listing 3 shows the typing metadata that has been deduced by BinCAT,
as reported in BinCAT’s output file. Since the string operation scasd
has been performed on DWORDs, it has deduced that each accessed address
from the memory area should be considered as having a size of 4 bytes.
T-mem [0 x806d060 *1]= DWORD
T-mem [0 x806d064 *1]= DWORD
T-mem [0 x806d068 *1]= DWORD

Listing 3. Typing data deduced by the analysis of repe scasd
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3 Main algorithms in BinCAT

This section presents the main algorithms that BinCAT implements.

3.1 Overview

To perform a static analysis on a given executable BinCAT takes the
following steps:

1. create an initial abstract state of the program, from user-supplied
inputs;

2. compute all reachable states from this initial state until no more new
states are discovered. The link between reached states are stored as a
graph called an unfolding of the control flow graph (uCFG). This uCFG
is not exactly the original control flow graph as functions are analyzed
as if they were inlined and instructions in loops may sometimes be
analyzed several times to improve the precision of the analysis;

3. repeat a fixed number of times:
(a) explore the computed uCFG backwards to refine results on abstract

states,
(b) explore forward the previously refined uCFG for further refinements

of states,
(c) if the new uCFG is equal to the one of the previous iteration then

exit;
4. dump a text version of this uCFG and values into a text file.

The rest of this section contains algorithmic elements on major steps
of this algorithm.

3.2 Inputs

To start an analysis BinCAT mainly needs:

– known initial contents of (part of) the memory and registers together
with their tainting value. Analysts can mark value, taint or both as
uncertain, to perform several analyses in parallel. Note that one does
not have to specify every value: if not present a default value is used
by the analyzer;

– options for the analyzer (default value for loop analysis, etc.);
– ABI specification: size of addresses, operands, stack width, etc.;
– an entry point address: where to start the analysis;
– import tables and a header file in C to get the signature of the imported

functions (used for type reconstruction).
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3.3 Intermediate language

The computation of abstract states is not done directly on real machine
instructions but rather on instructions of an intermediate language. Using
an intermediate language has two major advantages: it allows expressing
every side effect of complicated instructions (especially true for x86 instruc-
tions), enabling a simpler analysis of the instructions. It also facilitates
reusing the analyzer for another architecture by only adding a new decoder
for this new architecture to this intermediate language, the exploration
engine itself remaining the same.

The intermediate language we use is a variation of REIL [8]. REIL is
well suited for the analysis of x86 as it splits complicated x86 instructions
into sequences of simple expressions. Nevertheless, in REIL, this normal-
ization is too coarse, leading to a loss of precision during the analysis.
Hence, we rather allow some well-chosen complex arithmetic expressions
to avoid the generation of temporary fake registers to store intermediate
results which would lead to the accumulation of approximations.

Moreover, we have also added a new statement called a directive to the
intermediate language. It is the core mechanism used to add interaction
with an analyst or with results from IDA, for instance. An example of
BinCAT intermediate language is shown on Listing 2.

3.4 Abstract states

Remember that statically analyzing a binary program means computing
the set of possible values of registers and memory that the program can
take at any reachable instruction. We call this set of possible values an
abstract state.

At a given instruction, an abstract state mainly contains:

– the address of the instruction corresponding to the computed state;
– a context of analysis (like size of operands, addresses, etc.) as it may

vary during the lifetime of the program;
– an abstraction of the contents of the memory and the registers called

an abstract value. An abstract value represents, for each bit of the
memory and register, a set of possible properties that are true for that
bit. Currently, implemented properties are: Bit, Taint, Type:
• Bit-property is either: 0, 1 or unknown (⊤). Being unknown

means having value 0 or 1 which enables leading several analyses
in parallel.

• Taint-property is either: tainted, untainted or unknown (⊤).
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• Type-property is a property of a sequence of bytes and can be either
a C type or unknown (⊤). Type-properties are introduced by either
specific instructions such as repne scasb or by the analysis of the
call of an external function whose signature is known.

In the following these properties are called abstract domains.
Being a tool based on the theory abstract interpretation (see [7] for a

complete formalization), BinCAT has to respect some characteristics:

– an abstract domain is a complete lattice, that is a partial order ⊑ such
that every set of values has an upper bound (⊔) and hence a lower
bound (⊓). In our case, it means that we have to extend Bit, Taint,
Type with a bottom value representing an undefined property. Let us
denote ⊥ this special value;

– it implements a monotonous function that links abstract and concrete
states called a concretization function γ. The concretization function
of the abstract domain Bit is γ(⊥) = ∅, γ(⊤) = {0, 1}, γ(Z) = {0},
γ(O) = {1}. Concretization functions for Taint is very similar. For
Type it is such that γ(⊥) = ∅, γ(⊤) = {C types}, γ(t) = {t} with t a
C type. Note that an abstract value corresponds to a set of concrete
value. This is due to the fact that one wants to avoid false negatives
and hence the computation of loops may be overapproximated;

– it has to implement an abstract function for each concrete function
(that is functions on real machine values) of the intermediate language.
They are used to compute the successor of a given abstract state with
respect to a given instruction in the intermediate language. To ensure
that the abstract counter part F # function overapproximates the
corresponding concrete function F one has to prove that F ◦γ ⊆ γ◦F #.
For instance, in the Bit domain the result of the addition +# of Z
and O is O is a sound approximation of +

– every abstract domain of infinite height has a special operator called a
widening operator. This operator denoted ∇ is such that any sequence
of the form y0 = x0, y1 = y0∇x1, . . . , yn+1 = yn∇xn+1, . . . where xi

are abstract values is ultimately stationary. This operator will be used
to compute an overapproximation of the loop behaviors. While our
abstract domains are finite, we still define such an operator to make
loop computation faster. For Bit, we define ∇: 0∇0 = 0, 1∇1 = 1,
0∇1 = 1∇0 = ⊤, ⊥∇b = b∇⊥ = b and ⊤∇b = b∇⊤ = ⊤ for any b.
The widening a∇b for the two other abstract domains are very similar:
if a = b the result is a, otherwise the result is ⊤ except if one of them
is ⊥. In that latter case, result is the other operand.
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Induced properties The above mentioned properties on abstract domains
are the core mechanism to ensure that:
1. the main algorithm terminates;
2. the computed uCFG contains all the reachable states from a given

initial state, i.e. we can prove it generates no false negative3 except
those due the propagation of choices explicitly made by the analyst.

3.5 Building the maximal unfolded control flow graph
The uCFG is created iteratively starting from a given initial abstract state
built from the configuration provided to BinCAT. Then:
1. at step n, a set of states in the uCFG are marked to be explored. They

are shown as blue rounded rectangles in Figure 8. By construction,
they are always leaves of the uCFG.

2. one state (state4 in the figure) is chosen and removed from this set.
3. (Figure 8 step 1) instruction pointer (EIP), segment registers (CS, DS,

SS...) and context (16/32 bit mode for code or data...) are extracted
from the chosen state and given to the decoder.

4. (Figure 8 step 2) the decoder translates the pointed instruction into a
list of intermediate language statements.

5. (Figure 8 step 3) these statements are then applied to the state (state4)
to create another state (state5): abstract values for the memory
and registers are updated according to the intermediate language
statements. At this point, the analyzer may not be able to interpret
a statement because it does not have enough data in the state. For
instance, it may encounter a jump whose target is the value of a
register. If this value is unknown or imprecise, the analysis cannot
continue. In this case it will stop, asking the analyst for instructions.

6. finally, the new state is compared to all known states of the uCFG at
this instruction. A state s1 is lower than a state s2 if it has a lower
value in every abstract domain (remember that an abstract domain
is equipped with a partial order). Given two states and an abstract
domain every register and every memory byte are pairwise compared.
Two cases are possible:
– if it is not lower than a previous one, it is added to the uCFG as

a child of the state it has been computed from (state4) and it is
added to the states to be explored (Figure 8 step 4).

3 While BinCAT relies on the framework of abstract interpretation that is proven to
produce sound analysis results, implementation bugs and unimplemented features
(e.g. seldom used processor flags are currently not completely implemented) can
cause it to generate false negatives.
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– if it is lower, i.e. there exists a state in the uCFG that is a superset
of the abstract values held by this state (state5) then it is dropped.

7. at this point, the algorithm loops and the next unexplored state is
selected until there are no more unexplored states.

state1

state2
state3

state4

decode
instructions

list of statements

update

state1

state2
state3

state4

state5

EIP, contex
t, seg

ments

1

2

3
3

4
if new

uCFG
at step n

uCFG
at step n + 1

Fig. 8. The uCFG update operation; states to be explored are in blue; fixpoint is
reached when there is no state left to explore.

To ensure termination of this analysis (step 6), a counter is held on
each instruction of the uCFG. If a threshold is reached, the abstract values
of the memory and registers are over-approximated to take into account
all past and future values. This is done by joining all the previous abstract
values computed at this instruction and then widening the result with the
new value. Immediately using the widening operator is also a possibility
but the loop computation is more precise when this operation is applied
only after a few unrolls of the loop.

3.6 Backward analysis

Backward analysis runs on a given unfolded control flow graph – previously
computed during a forward pass – and performs only a refinement of the
previously computed abstract states that computes only states that can
be lower than previously computed at a given instruction. An example of
refinement occurs with type information: when a call of a function having
a known signature is encountered, the interpreter can deduce the type of
its parameters. This type information has to be propagated backward
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along the path as far as possible. Backward propagation stops either
because the sink of the control flow graph is reached or the information is
lost because of an approximation in the property field of a given abstract
state.

4 Architecture

BinCAT has been designed to be fully integrated in IDA, running on
Linux, Windows or macOS. Therefore, a few software components have
been developed:

– the BinCAT analyzer analyzes binaries (see section 3);
– the python wrapper allows manipulating analysis results as Python

objects;
– the web service (optional) enables running the BinCAT analyzer on a

remote machine;
– the IDA plugin is directly used by the analyst, launches analysis from

IDA, calling the BinCAT analyzer either directly or through the web
service, and displays results.

4.1 BinCAT analyzer

The BinCAT analyzer is written in OCaml. It can be easily compiled
on Linux using the Makefile provided, as a shared object (.so) and a
standalone command-line executable. Compiling it on other platforms
can be challenging and time-consuming.

It takes as inputs (i) an ini configuration file (see section 3), typically
generated by the IDA plugin; (ii) a user-supplied analyzed binary, from
which code and mapped sections will be loaded; (iii) optionally a mar-
shalled uCFG containing former analysis results, which is used in case of
a backward analysis or a refined forward analysis.

It then produces (i) an ini output file; (ii) a file containing a marshalled
version of the uCFG, used to run backward analysis from a state contained
in this analysis; (iii) a dot file containing a representation of the uCFG;
(iv) a log file.

Its inputs and outputs are summarized on Figure 9.

4.2 Python wrapper

The python wrapper parses the ini output file of BinCAT, and builds
Python objects:
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– CFG objects represent the unfolded Control Flow Graph, and provide
methods to access each State of the uCFG;

– State objects represent nodes of the uCFG, and provide access to
values and taint stored in memory and registers. There may be several
State objects for a given EIP, e.g. for different loop iterations;

– Value objects store either register names, memory addresses, or values
and taint that are stored in registers or memory.
Objects also contain helper functions, to display stored values, com-

pare states and display a human-readable text similar to the output of
the common diff tool. These functions are also used by the project’s
integration tests.

init.ini
configuration file

binary.exe

marshalled uCFG

BinCAT
analyzer

cfa.dot
representation of

the uCFG

marshalled uCFG

out.ini
analysis results output.log

Fig. 9. BinCAT binary inputs and outputs

4.3 Web service
A web service is provided to run BinCAT on a remote machine. This
facilitates the following use cases:
– Running IDA on macOS or Windows where compiling BinCAT is not

supported;
– Offloading computation on a remote, powerful machine;
– New BinCAT users can get started quickly, by simply installing the

IDA plugin.
This service is written in Python, using the flask framework.

Docker image The web service is distributed as a docker image, which
may be built using the provided Dockerfile.



P. Biondi, R. Rigo, S. Zennou, X. Mehrenberger 113

4.4 IDA plugin

An IDA plugin has been developed in Python. It provides analysts with
the following features:

– View value and taint at the current instruction for registers and
memory, where colors help analysts quickly identify tainted values;

– Interactively add taint overrides by clicking on a register, to force
tainting or removing taint on a register at a given instruction;

– Load default configuration files, depending on the platform the ana-
lyzed binary runs on (Windows, Linux, macOS), and generate relevant
configuration files;

– Allow analysts to edit the input configuration file for BinCAT to tweak
settings;

– Highlight instructions that have been analyzed in gray or green, de-
pending on whether their output depends on tainted data;

– Remember custom configurations as part of the IDB (IDA database)
for each instruction;

– Run BinCAT locally, or through the web service.

4.5 Testing

Writing the semantics of an instruction set is a tedious, time-consuming
and error-prone process. So, to avoid regressions and mistakes, BinCAT
includes tests to validate the semantics. Tests are written in Python and
use the py.test framework.

5 Conclusion

5.1 Related work

Many tools designed for advanced binary code analysis now exist, which
was not the case when the BinCAT project was started (2013). So the
purpose of this section is not to compare BinCAT to those projects but
to detail their features and see if they match the goals we discussed in the
first section.

Some are based on purely static approaches, others use dynamic
ones. [14] provides a good survey of tools and methods in the context
of automated vulnerability exploitation. We will only cover tools that
are (or could be) relevant to our context of interactive usage. This is
summarized in Table 1, where SE stands for symbolic execution and AI
for abstract interpretation. Mode is the way an analysis is run: it can
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be either dynamic (code to analyze is executed), static (code to analyze
is just looked at) or both. This table also indicates whether these tools
support the main features of BinCAT: IDA integration, value analysis,
CFG reconstruction, data tainting, and type reconstruction.

Tool Mode and theory Computed properties IDA Reference
vivisect Both (SE) Tainting No [3]
angr Both (SE + AI) Value, Tainting No [14]
Triton Dynamic (SE) Tainting No [9]
Ponce Dynamic (SE) Tainting Yes [10]
McSema + KLEE Static (SE) Value Limited [17] [15]
miasm2 Static (SE) Value Yes [6]
amoco Static (SE) Value No [16]
BAP Both (SE + AI) Tainting, Value Yes [5]
BINSEC Both (SE + AI) Value Yes [1]
BINDEAD Static (AI) CFG, Value No [13]
Jakstab Static (AI) CFG, Value No [11]
HexRaysCodeXplorer Static Typing Yes [2]
HexRaysPyTools Static Typing Yes [12]

Value here means value analysis. For Abstract Interpretation it corresponds to finding a set
of value that a register or a memory byte can take during an execution while for Symbolic

Execution it corresponds to finding a model that satisfies a path predicate. CFG stands for
CFG reconstruction.

Table 1. Tool comparison

Fully static approaches There are two major categories of static auto-
matic tools: those based on symbolic execution (by using SMT-solvers)
and those based on abstract interpretation (like BinCAT).

Tools based on abstract interpretation The principle of leading in parallel
a control flow graph reconstruction and a value analysis based on abstract
interpretation comes from [11]. Authors of this article also provide an
open source implementation of their technique as a tool called jakstab
which suffers from the following drawbacks: the exploration engine has
no interaction with the analyst; results are provided at the mathematical
level and there is no GUI.

bindead [13] implements also this technique but with a more expressive
set of properties (relational constraints on memory content for instance)
and a GUI but without interactivity with the analyst.

Another tool, BAP [5] supposes on the contrary a well-formed binary
program as their analyses rely on the notion of stack frames that cannot
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be trusted in the context of malware analyses. Moreover, this tool exposes
several ABIs to lead analyses but corresponding implementations are not
very elaborated.

Finally, binsec framework [1] is currently frozen for its static part while
the DSE (Dynamic Symbolic Execution) part is focused on properties
linked to deobfuscation.

Furthermore, for all of them the integration with IDA seems to be
an afterthought rather than a design choice, and is limited to displaying
analysis results rather than enabling rich interaction with analysts.

Tools based on symbolic execution

McSema, while not a symbolic execution tool in itself, is interesting as
it translates x86 and x86_64 code into LLVM intermediate representation.
It can thus be combined with tools such as KLEE to provide symbolic
execution of binary code. It also does not provide any IDA integration or
GUI.

miasm is quite powerful: it includes symbolic execution, emulation,
data slicing, etc. It is also able to emulate APIs and system calls. Being
developed in Python, it interfaces easily with IDA and already includes
several scripts to interact with the engine from IDA. However, data tainting
support is not yet included in the main branch.

amoco is quite similar to miasm but does not implement API emulation
nor data tainting and lacks IDA integration.

Misc Two interesting plugins for IDA provide very useful features for the
reverser: HexRaysCodeXplorer and HexRaysPyTools. In particular, they
are able to rebuild structures from decompiled code in Hex-Rays. But
they do not provide taint analysis, and are limited to code decompiled by
Hex-Rays, which is not always accurate (and very expensive!).

Comparing static analyses by symbolic execution and by Abstract interpre-
tation Static analysis by abstract interpretation is a powerful technique
to analyze programs as:

– abstract interpretation comes with a way to combine as many data
flow analyses as needed (typing, data tainting, etc.) in parallel, while
communicating to refine their mutual results. This is not the case for
symbolic execution;

– static symbolic execution can be (like any data flow analysis) encoded
as an abstract domain and hence provide other analyses with models
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computed from a path predicate to make them more precise. The
reverse is not necessarily true;

– abstract interpretation deals with loop computation without having
to fully unroll them while having a widening operator which ensures
no false negatives are generated. This is suitable if one wants to prove
the absence of a vulnerability in a code or help the analysts to revert
their analysis hypotheses.

Dynamic approaches BinCAT was designed from the start to be a
static analysis tool, but dynamic approaches are also interesting as they
provide the analyzer with a concrete context. So this section covers some
tools that can help reversers but are not directly comparable with BinCAT.

Ponce, which is a wrapper around Triton integrated with IDA is very
interesting for the reverse engineer as it can be used as part of a standard
IDA workflow.

angr is a very complete framework which includes a lot of approaches,
including static value set analysis, and includes bridges to combine them.
However, it lacks IDA integration and is oriented towards automated
vulnerability discovery rather than manual analysis. But, given it is
implemented in Python, it would be a great candidate for an integration
with IDA.

vivisect completely lacks documentation and does not seem to include
any interface with IDA.

5.2 Future work

While BinCAT is already usable in its current state, evolutions are, of
course, planned to make it more useful.

Testing While the unit tests written in Python are helpful, they are
tedious to write. To speed up testing instruction semantics, we plan to
use testi386 from QEMU, which is conceptually very simple: an ELF
binary which computes values using a wide range of CPU instructions and
arguments, and which uses printf to display the results.

QEMU compares the emulated output with the results of an execution
on actual hardware. BinCAT will just need a stub of printf to be able
to use the tests.

Additional ISA As the analyzers are all based on the intermediate language,
adding support for another architecture “only” requires implementing a
decoder. The two obvious candidates are AMD64 and ARM.
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New analysis domains As the results are heavily tied to the abstract
domains, adding new ones can improve certain parts of the analysis or
even provide new functionalities. Some options include:

– a more abstract memory domain to model ranges of values for each
byte of memory, like the Value Set Analysis [4];

– a domain encoding a symbolic analysis, potentially combined with a
SMT solver to get logical invariants;

– a shape analysis to compute how dynamically created objects are
linked;

– relational domains like polyhedra to compute invariants into a given
stack frame.

C++ helpers C++ is particularly tedious to reverse, mostly because of
indirect calls through vtable pointers and complex object structures. Bin-
CAT’s value analysis could be very helpful to recover the call graph, while
type reconstruction could help recover object structures.

In particular, a full analysis starting from nothing is impossible but
starting from parts of a concrete state copied from a live process would
give the analysis engine enough to start analysis.

Other improvements Various improvements could also be implemented:

– handling of self-modifying code: while the engine itself does not make
any assumption about the code, the decoder does not use the memory
abstraction and only gets the code from the binary;

– distinguishing taint sources: currently the taint engine only supports
one taint. The idea would be to tag different taint sources to be able
to distinguish them, as explained in [18].

– data tainting based on the control flow: i.e. tainting data manipulated
in a branch depending on tainted data. As overtainting is likely, testing
is needed to decide if a better option would be to allow explicit tainting
in a branch based on an analyst’s decision.
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